
Reactive Programming on the Bare Metal: A Formal
Model for a Low-Level Reactive Virtual Machine

Bjarno Oeyen
bjarno.oeyen@vub.be

Vrije Universiteit Brussel
Brussels, Belgium

Joeri De Koster
joeri.de.koster@vub.be

Vrije Universiteit Brussel
Brussels, Belgium

Wolfgang De Meuter
wolfgang.de.meuter@vub.be
Vrije Universiteit Brussel

Brussels, Belgium

Abstract
Reactive programming hasmany applications for embedded
devices in IoT and other application domains. For these con-
strained devices it is crucial to bound the overhead of the
execution of non-functional concerns such as glitch free-
dom. Reactive programming languages with static depen-
dency graphs can implement glitch freedom by topologi-
cally sorting the dependency graph ahead of time. However,
for more traditional reactive programming languages that
support a dependency graph that can dynamically change,
glitch freedom is typically implemented using a priority
queue in which signals are enqueued according to their lo-
cation in the graph. This is undesirable for embedded de-
vices, as dynamically updating this priority queue has an un-
desirable, and sometimes unbounded, overhead. In this pa-
per, we present a small-step operational semantics of a vir-
tual machine specialised for running reactive programs that
combines static ahead-of-time compilation of reactive pro-
grams into topologically sorted dependancy graphs while
maintaining support for dynamic modifications to those de-
pendency graphs.

CCS Concepts: • Software and its engineering → Data
flow languages; •Theoryof computation→Operational
semantics.

Keywords: Reactive Programming, Internet-of-Things, Op-
erational Semantics, Memory Consumption

ACM Reference Format:
Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter. 2022.
Reactive Programming on the Bare Metal: A Formal Model for a
Low-Level Reactive Virtual Machine. In Proceedings of ACM Con-
ference (Conference’17). ACM, New York, NY, USA, 13 pages. https:
//doi.org/10.1145/nnnnnnn.nnnnnnn

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for compo-
nents of this work owned by others than ACM must be honored. Abstract-
ing with credit is permitted. To copy otherwise, or republish, to post on
servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
Conference’17, July 2017, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM…$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 Introduction
Reactive programs are made up from time-varying signals.
Whenever a data source on which a time-varying signal de-
pends updates its value, that change is propagated through
a dependency graph (which keeps track of the dependencies
between the time-varying signals) to update that signal’s
value.The goal of reactive programming (RP) languages is to
propagate these changes in a glitch-freemanner [7]. A glitch
occurs when a signal’s value is updated before the signals
that it depends on are updated. The standard explanation of
a glitch uses the following example program: (< time (+
time 1)) (where time is a time-varying signal that is au-
tomatically incremented over time). This program contains
three time-varying signals: the time signal (𝜎1), the signal
correspondingwith the (+ …) expression (𝜎2) and the signal
corresponding with the (< …) expression (𝜎3). Whenever 𝜎1
(the time signal) is updated (e.g., by incrementing it by one),
both 𝜎2 and 𝜎3 must also be updated as they depend on 𝜎1.
However, if during this update phase (which we refer to as a
turn), 𝜎3 is updated before 𝜎2, then the < computation might
use an old value of 𝜎3 and (temporarily, depending on the
semantics of the reactive programming language) produce
false.

There are various kinds of solutions to prevent glitches
(some of which are intended to be used in multi-core com-
puting environments [12], or for distributed applications [20,
21]). The standard approach, proposed by Cooper and Kr-
ishnamurthi in [7], is to use a priority queue in which sig-
nals are ordered according to their height in the reactive
program’s dependency graph: signals with a smaller height
are updated before those with a larger height. Signals that
do not depend on any other signal are given height 0, and
all others signals have a height that is strictly larger than
the heights of its dependencies (usually, a signal’s height is
computed by incrementing the largest height assigned to its
predecessors by one).

However, this approach can be quite inefficient. While in-
dividual operations in a priority queue data structure are
usually quite efficient (both enqueueing and dequeuing in a
heap data structure, often used to implement priority queues,
have a worst-case time complexity of O(log𝑛), where 𝑛 is
the size of the priority queue [8]), most reactive program-
ming languages that employ a priority queue to schedule

https://orcid.org/0000-0002-2100-4559
https://orcid.org/0000-0002-2932-8208
https://orcid.org/0000-0002-2100-4559
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter

signal updates have to constantly make use of these opera-
tions to correctly schedule the updates of signals, causing an
overhead that (as this paper will show) is easy to avoid. Es-
pecially in reactive programs with a dynamic dependency
graph (e.g., those with the presence of if forms), keeping
the priority queue up-to-date with the changing heights can
incur a hefty overhead.

While this overhead is mostly negligible on personal com-
puters (and other, more powerful, hardware), it can poten-
tially become significant on low-powered devices with lim-
ited processing power. For example, microcontrollers, espe-
cially those targeted at embedded devices in IoT applica-
tions, have only limited processing power (usually expressed
in MHz, not in GHz) and limited memory capacity (KiB in-
stead of GiB). If one wants to use an RP language for writing
IoT applications, the RP language must make effective use
of the limited resources of the embedded hardware which
means that the priority queue solution is therefore not an
option.

One approach, in which no priority queue (or another
more complex data structure) is needed is to perform a topo-
logical sort of the reactive program’s dependency graph [28].
However, this solution is inadequate for reactive programs
with a dynamic dependency graph (i.e. one that changes
while the program is running). Reactive programming lan-
guages usually provide the means to alter dependencies at-
runtime. For example by allowing lifted functions to create
new signals which can then be connected via built-in higher-
order operators, the dependencies between the signals can
change while the program is running. If special care is not
taken, these operators can invalidate a pre-determined topo-
logical ordering of the older graph.

In this paper, we present Remus, a formal specification
of a virtual machine that has been carefully designed to
be usable for running reactive programs in low-powered
computing environments, despite having support for reac-
tive programs with dynamic dependency graphs. This ap-
proach, of using a virtual machine, enabled us to examine
the individual computational steps that must bet taken dur-
ing the evaluation of a reactive program in a much more
fine-grained manner. This allowed us to design a general
solution for allowing reactive programs to have a dynamic
dependency graph, without needing to use a priority queue
or another more complex data structure, independent of the
original language. As such, we conjecture that the presented
formalisation can be applied to multiple reactive languages,
despite the design of Remus being considerably influenced
by Haai [24]. The main abstraction of Haai, that is conse-
quently also used by Remus, is that of a reactor. Reactors in
Haai are mere descriptions of (uninstantiated) dependency
graphs which can be (for example, by a compiler) topolog-
ically ordered ahead of time. Whenever there is a dynamic
branching point in a reactor, the compiler has to generate

1 (define t (- seconds (value-now seconds)))
2 (define s (if (even? t) (/ t 2) (+ (* t 3) 1)))

Listing 1. FrTime program that defines different types of
signals.

code that forces Remus can jump to another reactor’s de-
scription before resuming, similar to function application.
This approach is possible for the Haai language, as Haai
programs consist of only reactors. Haai programs are not
constructed by applying procedures that, as a side effect of
being evaluated, affect the dependency graph (which is the
case in e.g., FrTime [6], as we will explain in Section 2.1).
As such there is no need to run a so-called loader program
that is implemented in a non-reactive (e.g., functional, pro-
cedural…) language.

The structure of the rest of this paper is as follows. In Sec-
tion 2 we present the evaluation model that influenced the
design of our virtual machine by means of example code in
Haai. In Section 3 we introduce Remus and present its syn-
tax, semantic entities and the small-step operational seman-
tics that describe Remus’ run-time behaviour. In Section 4
we reflect on the design of Remus, discuss its compiler and
ongoing research activities that we intent to solve in future
extensions. In Section 5 we present a brief overview of re-
lated work, before concluding the paper in Section 6.

2 Approach
2.1 Problem Statement

There are different approach to reactive programming. In
our approach, we think of reactive programs as nothingmore
than graphs whose nodes represent signals (which are to be
updated in a certain way) and edges as the dependencies be-
tween signals. In a lot of reactive programming languages,
these dependency graphs are constructed incrementally by
evaluating non-reactive (e.g., imperative, functional…) code.
We will explain this using the code example in Listing 1,
which shows a reactive program implemented in FrTime [6].
FrTime’s evaluationmodel is an adaptation of Scheme’s [15].
Similar to Scheme, FrTime code is evaluated from top-to-
bottom. First, a new variable named t is defined which is
bound to the result of evaluating the expression (- seconds
(value-now seconds)). During the evaluation of that ex-
pression the subexpression (value-now seconds) is evalu-
ated first. So far, these are ordinary Scheme semantics. The
result of evaluating this expression is the at evaluation-time
value of the seconds signal (which is defined as a signal
that carries the number of seconds since the Unix epoch).
The value returned by (value-now seconds) is thus an or-
dinary number (𝑛), and not a time-varying signal and is thus
not be updated when seconds changes. Then, FrTime eval-
uates (- seconds 𝑛), this returns a signal whose value is
equal to the current value of seconds, minus 𝑛. Or in other

Reactive Programming on the Bare Metal Conference’17, July 2017, Washington, DC, USA

words, the - function is lifted to the reactive level such that
it can be applied to the time-varying signals.This effectively
creates a signal whose value is initially equal to 0, and is au-
tomatically incremented by one every second.

After t has been defined, the expression that defines the
variable s is evaluated.This signal is defined using ifwhich
has the same semantics as Scheme’s if if only the condi-
tional expression would not evaluate to a conditional signal
(which it does in this example, as (even? t) produces a sig-
nal). In that case, FrTime’s lifts the if: creating a conditional
signal which alternates between two expressions. Assuming
that both definitions in Listing 1 are processed in quick suc-
cession, the signal bound to t will probably still be equal
to 0 and thus FrTime will evaluate the conditional’s con-
sequent expression. The conditional signal’s value is, from
that point on, equal to the value of the signal returned by
evaluating that expression. One second later (when the t sig-
nal becomes 1) the conditional signal changes from #t (true)
to #f (false). FrTime will then evaluate the conditional’s al-
ternate expression and let the conditional signal’s value be
equal to the value of that signal, from that point on. An-
other second later, the opposite happens again. The conse-
quent expression is re-evaluated (for the second time) and
the conditional signal is connected to the result of this eval-
uation.

In summary, FrTime’s evaluationmodel is similar to those
of Scheme except that evaluating certain expressions will
make incremental changes to a globally-maintained depen-
dency graph. I.e. a reactive program in FrTime contains a
loader program that constructs the dependency graph (which
is the actual reactive progam). This loader program is not
only executed once when the program is started, but also
during the evaluation of lifted functions.

This tight embedding of Scheme in FrTime makes it chal-
lenging to predict, in general, the structure of a reactive pro-
gram’s dependency graph as it constantly relies on the eval-
uation of unrestricted Scheme expressions. To statically con-
struct a dependency graph of a FrTime program (e.g., to per-
form a topological sort of the dependency graph), one needs
to analyse the FrTime program in its entirety, incorporating
in the analysis not only Scheme’s original semantics but also
FrTime’s non-trivial extensions.

We have observed that the mixing of reactive and non-
reactive code is not only limited to FrTime, but can also be
found in other reactive languages, such as REScala [26] and
Flapjax [18]. However, other languages and frameworks in
which a dependency graph is constructed in a similar way
include RxJS [17] and Akka [32]. The former constructs de-
pendency graph-like data structures when running a Java-
Script program, while the latter does so using Scala (or Java).

2.2 Evaluation Model
The evaluation model of reactive programs that we will em-
ploy is unlike FrTime’s. Instead of evaluating expressions

1 (defr (main)
2 (def t (- seconds (deploy-time-value seconds)))
3 (def s (if (even? t) (/ t 2) (+ (* t 3) 1)))
4 (out s))

Listing 2. Translation of the FrTime program from Listing 1
into a Haai reactor.

that, as a side effect of being executed, alter a dependency
graph, we make use of reactors [24]. Reactors are textual de-
scriptions of dependency graphs which can be constructed
directly, without having to evaluate non-reactive code. Re-
actors themselves are only descriptions of reactive programs.
Instances of reactors, which we call deployments, are ac-
tually connected to time-varying signals and will react to
changes.

The rest of this section, will show code examples in Haai,
a reactive programming language that we have designed as
part of our research endeavours into reactive programming.
Haai’s only computational unit is that of a reactor. A trans-
lation of Listing 1 into a Haai reactor is shown in Listing 2.
Haai’s syntax has been inspired by Scheme’s syntax. And
besides a few minor changes, the code is identical1. How-
ever, Haai’s semantics are unlike those of Scheme or FrTime.
Expressions like (/ t 2) and (+ (* t 3) 1) are not ap-
plication expressions that, when evaluated, call (or apply) a
procedure on a sequence of argument values. These expres-
sions represent the deployment of another reactor: the in-
stantiation (deployment) of a reactor on a sequence of (possi-
bly) time-varying signals. We call these expressions deploy-
ment expressions. Programmer-defined reactors in Haai are
always composed out of smaller reactors (e.g., main makes
use of -, even?…).These reactors can be other programmer-
defined reactors, or primitive reactors. This is different from
(e.g.,) FrTimewhere such an abstraction is absent and where
composition can only be supported by composing functions
(procedures) which can, when applied, alter the globally-
maintained dependency graph.

Reactor definitions in Haai correspond with a so-called
reactor graph: a graph that shows the internal wirings that
represent the reactor with various sources that have to be
filled in when the reactor is being deployed. According to
this definition, a reactor can have more than one source
and sink nodes, which is shown in Listing 3. Sources can
be added by providing additional symbols (names) after the
name of the reactor (within the parentheses). Multiple sinks

1The only noteworthy difference is a different name used in place of
value-now. The intent of deploy-time-value, however, is the same as
that of value-now in FrTime: to get a signal’s current value at a certain
moment in time. In FrTime this is called value-now as it returns the value
that a signal has at the moment that that expression is evaluated. In Haai,
we call this deploy-time-value to emphasise the fact that reactors in Haai
have to deployed (instantiated). As such, deploy-time-value remembers
the value that a signal had at-deployment time.

Conference’17, July 2017, Washington, DC, USA Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter

1 (defr (sum-and-product x y)
2 (def s (+ x y))
3 (def p (* x y))
4 (out s p))

Listing 3. Reactor definition of sum-and-product.

x

y

+

*

s

p

Figure 1. Reactor graph of the program in Listing 3. The
boxes around + and * represent the at-runtime deployment
of the + and * reactors, respectively.

are supported by adding more operand expressions to the
out form, which by convention is the last expression placed
in the body of a reactor definition. Figure 1 shows the cor-
responding reactor graph.

2.3 Design of the Virtual Machine
The design of Remus is thus inspired on Haai’s evaluation
model of reactors and deployments. Remus programs, how-
ever, are not simply a collection of reactor graphs fromHaai.
Remus does not make use of a dependency graph where sig-
nals are assigned heights and a priority queue to properly
schedule signal updates. Remus executes instructions called
commands that, when executed, allocate deployments, move
data around and perform (primitive) computations. These
commands are executed from top-to-bottom. As such, reac-
tor definitions in Remus are linear descriptions of a possible
ordering to update the values of the signals that make up a
reactive program.

These linear descriptions are generated by pre-scheduling
a reactor. A reactor is pre-scheduled by ordering the nodes
(i.e. signals) of the reactor graph in topological order. Haai’s
reactors are easy to pre-schedule since their textual descrip-
tion corresponds directly with the dependency graph: there
is no need to evaluate non-reactive code to construct the
dependency graph. Furthermore, since a reactor graph does
not contain nodes for the signals created by any inner de-
ployments, each reactor can be pre-scheduled independent
of one another. This will be the key idea that allows Remus
to have support for reactive programs with dynamic depen-
dency graphs.

2.4 Dynamic Deployments
The program in Listing 4 exemplifies how the dependency
graph of a Haai program can be dynamic, by treating reac-
tors as first-class values.

A deployment of foo-or-bar will, during a turn, make
use of a deployment of either foo or bar, depending on the
parity of n (a source signal of the foo-or-bar reactor). As n

1 (defr (foo) …)
2 (defr (bar) …)
3 (defr (foo-or-bar n)
4 (def r (if (even? n) foo bar))
5 (out (r n 10)))

Listing 4. Example of a dynamic deployment expression in
Haai. The definitions of foo and bar are elided since they
are not important for the example.

can change over time, the deployment used by foo-or-bar
can change between turns.

When talking about dynamic deployments, we make the
distinction between static and dynamic deployment expres-
sions, and monomorphic and polymorphic branching points2

that they bring about. The former represents a syntactic dis-
tinction, while the latter a behavioural distinction. A static
deployment expression is one where the operator expres-
sion refers directly (by name) to a defined reactor. E.g., the
expression (+ 10 temperature) is a static deployment ex-
pression (assuming that + is bound to the primitive + reac-
tor, and is not shadowed by another variable definition). If
the operator expression refers to something else, it will be
a dynamic deployment expression. E.g., the expression (r
n 10) (in Listing 4). Dynamic deployment expressions can
result in branching points that are either monomorphic or
polymorphic, depending on the program itself and which
values the operator signal can carry at-runtime. A polymor-
phic deployment, however, is always the result of a dynamic
deployment expression. Finally, if expressions themselves
are similar to dynamic deployment expressions, as the ac-
tive expression depends on a run-time value.

Reactorswith polymorphic branching points are supported
by Remus. A special set of commands exists that will enable
Remus Remus to not only swap to the correct active deploy-
ment, but also to create a new one if a deployment of the
reactor to use does not exist yet. In other words, there is no
need to analyse the program in its entirety to determine a
topological sort of all the signals that make up a (running)
program. This avoids the problem of having to analyse a re-
active program in its entirety before a topological ordering
can be generated that remains valid, even when the struc-
ture of the dependency graph changes.

3 Remus: A Virtual Machine for RP
In this section, we present Remus, a formal specification of
a virtual machine for reactive programming3.

Reactive Programming on the Bare Metal Conference’17, July 2017, Washington, DC, USA

𝑝 ∈ Program ::= 𝑅
𝑟 ∈ 𝑅 ⊆ Reactor ::= R ⟨𝑥, 𝑐𝑑 , 𝑐𝑟 ⟩

𝑐 ∈ 𝐶 ⊆ Command ::= C𝐴𝑙𝑙𝑜𝑐𝑀𝑜𝑛𝑜 ⟨𝑥 ⟩
| C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨𝑜, 𝑙, 𝑖 ⟩
| C𝑅𝑒𝑎𝑐𝑡 ⟨𝑙 ⟩
| C𝐶𝑜𝑛𝑠𝑢𝑚𝑒 ⟨𝑙, 𝑖 ⟩
| C𝐺𝑙𝑜𝑏𝑎𝑙 ⟨𝑥 ⟩
| C𝑆𝑖𝑛𝑘 ⟨𝑜, 𝑖 ⟩
| C𝑀𝑎𝑘𝑒𝑃𝑜𝑙𝑦

| C𝐴𝑙𝑙𝑜𝑐𝑃𝑜𝑙𝑦 ⟨𝑜, 𝑙 ⟩
| C𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 ⟨𝑥 ⟩

𝑜 ∈ Operand ::= 𝑣 | 𝑙
𝑙 ∈ 𝐿 ⊆ Location ::= ⊙𝐷 ⟨𝑖 ⟩ | ⊙𝑅 ⟨𝑖 ⟩

| ⊙𝐼 ⟨𝑖 ⟩ | ⊙𝑂 ⟨𝑖 ⟩
𝑣 ∈ 𝑉 ⊆ Value ::= 𝑖 | 𝑏 | 𝑥

𝑥 ∈ 𝑋 ⊆ Name
𝑖 ∈ Number = N, 𝑏 ∈ Boolean = {true, false}

Figure 2. Syntax of Remus.

3.1 Syntax
The syntax of programs that Remus uses is shown in Fig-
ure 2. A reactive program in Remus consists of a set of re-
actor definitions 𝑅. A reactor definition is a name given to
two distinct command sequences 𝑐𝑑 and 𝑐𝑟 that describe the
behaviour of an individual reactor. The first sequence con-
tains the deployment commands, which are only executed
once per deployment of a given reactor (and initialise the de-
ployment). The second sequence contains the reaction com-
mands, which are executed whenever a deployment needs
to update its sinks. An overview of the commands is pre-
sented in Section 3.1.1. Most commands have one or more
operands (𝑜) of which there are two types: values (𝑣) and lo-
cations (𝑙). Valid values in Remus are natural numbers (𝑖),
booleans (𝑏) and names (𝑥). Names are used to refer to re-
actors (which are uniquely identified by their name) and do
not represent variables. Locations represent the address (rel-
ative to the current deployment) in which the current value
of a signal can be found. There are four types of locations
(represented by ⊙𝐷 , ⊙𝑅 , ⊙𝐼 and ⊙𝑂).

3.1.1 Commands. Table 1 presents a brief overview of all
the commands present in Figure 2. Commands are used for
the various kinds of operations that Remus needs to per-
form: moving values around, allocating and managing de-
ployments and applying primitive computations. Each com-
mand is executed using a specific deployment as its con-
text. The result of executing a command is, usually, stored
within a deployma specificent. Commands that store values
will almost always store a value in a deployment-specific
memory region relative to the location of the command it-
self (one can see a deployment as a vector where each slot

2This vocabulary has been inspired by Deutsch and Schiffman in [11].
3The operational semantics described in this section have been imple-
mented using PLT Redex [16]. The source code of this implementation can
be found online: https://gitlab.soft.vub.ac.be/boeyen/remus/.

Command Description D R
C𝐴𝑙𝑙𝑜𝑐𝑀𝑜𝑛𝑜 ⟨𝑥 ⟩ Allocates (creates) a new deployment of a reactor

named 𝑥
3 –

C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨𝑜, 𝑙, 𝑖 ⟩ Supplies a value 𝑜 (which can either be a location
referencing a time-varying value, or a constant
value) to the deployment stored in 𝑙 (as the source
value on position 𝑖).

– 3

C𝑅𝑒𝑎𝑐𝑡 ⟨𝑙 ⟩ Will update the deployment stored in 𝑙 and after-
wards return and resume the evaluation of the
current command sequence.

– 3

C𝐶𝑜𝑛𝑠𝑢𝑚𝑒 ⟨𝑙, 𝑖 ⟩ Consumes a sink value (of position 𝑖) of the de-
ployment stored in 𝑙 .

– 3

C𝐺𝑙𝑜𝑏𝑎𝑙 ⟨𝑥 ⟩ Reads the current value of a global (primitive)
time-varying signals named 𝑥 .

– 3

C𝑆𝑖𝑛𝑘 ⟨𝑜, 𝑖 ⟩ Stores the value of location 𝑜 as one of the de-
ployment’s own sink values (position 𝑖).

– 3

C𝑀𝑎𝑘𝑒𝑃𝑜𝑙𝑦 Creates a new branching point for dynamic de-
ployment expression.

3 –

C𝐴𝑙𝑙𝑜𝑐𝑃𝑜𝑙𝑦 ⟨𝑜, 𝑙 ⟩ Creates a new deployment of the reactor identi-
fier that can be found in 𝑜 given the branching
point identifier found in 𝑙 , if it does not already
exist. If it already exists, it reuses the old deploy-
ment.

– 3

C𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 ⟨𝑥 ⟩ Performs a primitive computation, as identified
by 𝑥 . E.g., C𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 ⟨+⟩ performs the addition
of two numbers.

– 3

Table 1. Summary of the commands of Remus.The columns
D and R show a 3 if a command is suitable to be placed in
either the deployment command sequence or reaction com-
mand sequence of a reactor.

corresponds with a command in either command sequence
that is used to store that command’s result). For example the
C𝐴𝑙𝑙𝑜𝑐𝑀𝑜𝑛𝑜 ⟨𝑥⟩ command will create a new deployment of a
reactor named𝑥 , and store a reference to it in the deployment-
specific memory region, relative to the location of the com-
mand itself. Commands can then refer to the output of other
commands as if these would be signals from an RP language.

While this approach might not actually be optimal for an
actual virtual machine (especially one intended to be used
on small-scale embedded devices with limited memory as
those mentioned in Section 1) as not all commands store
data in a deployment’s memory, we found this approach
convenient to think about a reactive program’smemory con-
sumption (which will be discussed in much greater detail in
Section 4). Still, if in the future a different memory layout is
chosen, or another (more direct) approach is chosen to com-
pile reactive programs for small-scale (embedded) devices,
one can still use Remus’ representation as an intermediate
representation.

Table 1 also includes an overview of which commands are
present in which the two types of command sequences. A 3
underD indicates that a commandwill probably occur in the
deployment command sequence, and a 3 under R indicates
those commands that can occur in the reaction commands
sequence. This is not strictly enforced but indicates the lo-
cations where our current compiler (which is discussed in
Section 4.3) places certain commands, and we deem it likely
that future changes may change the location of certain com-
mands. Therefore, we do not make a syntactical distinction
between the two types of commands in Figure 2.

https://gitlab.soft.vub.ac.be/boeyen/remus/

Conference’17, July 2017, Washington, DC, USA Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter

𝑟𝑠𝑎𝑝 =R ⟨ sum-and-product,
D [⟨1⟩ C𝐴𝑙𝑙𝑜𝑐𝑀𝑜𝑛𝑜 ⟨+⟩,

⟨2⟩ C𝐴𝑙𝑙𝑜𝑐𝑀𝑜𝑛𝑜 ⟨*⟩],
R [⟨1⟩ C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨⊙𝐼 ⟨1⟩, ⊙𝐷 ⟨1⟩, 1⟩,

⟨2⟩ C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨⊙𝐼 ⟨2⟩, ⊙𝐷 ⟨1⟩, 2⟩,
⟨3⟩ C𝑅𝑒𝑎𝑐𝑡 ⟨⊙𝐷 ⟨1⟩⟩,
⟨4⟩ C𝐶𝑜𝑛𝑠𝑢𝑚𝑒 ⟨⊙𝐷 ⟨1⟩, 1⟩,
⟨5⟩ C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨⊙𝐼 ⟨1⟩, ⊙𝐷 ⟨2⟩, 1⟩,
⟨6⟩ C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨⊙𝐼 ⟨2⟩, ⊙𝐷 ⟨2⟩, 2⟩,
⟨7⟩ C𝑅𝑒𝑎𝑐𝑡 ⟨⊙𝐷 ⟨2⟩⟩,
⟨8⟩ C𝐶𝑜𝑛𝑠𝑢𝑚𝑒 ⟨⊙𝐷 ⟨2⟩, 1⟩,
⟨9⟩ C𝑆𝑖𝑛𝑘 ⟨⊙𝑅 ⟨4⟩, 1⟩,
⟨10⟩ C𝑆𝑖𝑛𝑘 ⟨⊙𝑅 ⟨8⟩, 2⟩] ⟩

Figure 3. Encoding of the sum-and-product reactor from
Listing 3.

3.1.2 Basic Example. Before moving unto the semantic
entities and the reduction relation that we have defined for
Remus, we first present a few examples of reactors encoded
using the syntax of Remus. Figure 3 shows a possible encod-
ing of the sum-and-product reactor from Listing 3.

To aid in the readability of this encoding, we have in-
cluded a few annotations in grey. A D and R are used to tag
both command sequences and numbers in front of the indi-
vidual commands (⟨...⟩) denote the location of each individual
command in its sequence. These annotations are not part of
the syntax themselves and are simply there to aid the reader
in understanding the ⊙𝐷 and ⊙𝑅 operands in the two com-
mand sequences.

The deployment command sequence of sum-and-product
contains two commands: one to allocate a deployment of the
+ reactor, and one to allocate a deployment of the * reactor.
When the sum-and-product reactor is deployed, these two
commandswill create their respective deployments, and store
a reference to that deployment that can be referenced by
the location of the command. The first reaction command
will immediately make use of the + deployment.The C𝑆𝑢𝑝𝑝𝑙𝑦
command will supply the first source value of the local de-
ployment (⊙𝐼 ⟨1⟩, first operand) to the first source (1, third
operand) of the deployment that is stored in memory in
the location that belongs to the first deployment command
(⊙𝐷 ⟨1⟩, second operand)4. The second reaction command
does the same for the second source.The third reaction com-
mand (C𝑅𝑒𝑎𝑐𝑡) then signals the virtual machine that the de-
ployment stored in ⊙𝐷 ⟨1⟩ must react.This updates the sinks
of the + deployment. The mechanism that drives primitive
reactors will be explained later in Section 3.3.1. Once that
deployment has updated itself, the computation of the sum-
and-product deployment continues by getting the sink value
of that deployment and storing it locally using the C𝐶𝑜𝑛𝑠𝑢𝑚𝑒

4Note that offsets in Remus use 1-based indexing. As Remus is a formal
specification of a virtual machine, we did not see any reason to start count-
ing from 0.

𝑟 𝑓 𝑜𝑏 =R ⟨ foo-or-bar,
D [⟨1⟩ C𝐴𝑙𝑙𝑜𝑐𝑀𝑜𝑛𝑜 ⟨even?⟩,

⟨2⟩ C𝐴𝑙𝑙𝑜𝑐𝑀𝑜𝑛𝑜 ⟨if*⟩,
⟨3⟩ C𝑀𝑎𝑘𝑒𝑃𝑜𝑙𝑦],

R [⟨1⟩ C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨⊙𝐼 ⟨1⟩, ⊙𝐷 ⟨1⟩, 1⟩,
⟨2⟩ C𝑅𝑒𝑎𝑐𝑡 ⟨⊙𝐷 ⟨1⟩⟩,
⟨3⟩ C𝐶𝑜𝑛𝑠𝑢𝑚𝑒 ⟨⊙𝐷 ⟨1⟩, 1⟩,
⟨4⟩ C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨⊙𝑅 ⟨3⟩, ⊙𝐷 ⟨2⟩, 1⟩,
⟨5⟩ C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨foo, ⊙𝐷 ⟨2⟩, 2⟩,
⟨6⟩ C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨bar, ⊙𝐷 ⟨2⟩, 3⟩,
⟨7⟩ C𝑅𝑒𝑎𝑐𝑡 ⟨⊙𝐷 ⟨2⟩⟩,
⟨8⟩ C𝐶𝑜𝑛𝑠𝑢𝑚𝑒 ⟨⊙𝐷 ⟨2⟩, 1⟩,
⟨9⟩ C𝐴𝑙𝑙𝑜𝑐𝑃𝑜𝑙𝑦 ⟨⊙𝑅 ⟨8⟩, ⊙𝐷 ⟨3⟩⟩,
⟨10⟩ C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨⊙𝐼 ⟨1⟩, ⊙𝑅 ⟨9⟩, 1⟩,
⟨11⟩ C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨10, ⊙𝑅 ⟨9⟩, 2⟩,
⟨12⟩ C𝑅𝑒𝑎𝑐𝑡 ⟨⊙𝑅 ⟨9⟩⟩,
⟨13⟩ C𝐶𝑜𝑛𝑠𝑢𝑚𝑒 ⟨⊙𝑅 ⟨9⟩, 1⟩,
⟨14⟩ C𝑆𝑖𝑛𝑘 ⟨⊙𝑅 ⟨13⟩, 1⟩] ⟩

Figure 4. Encoding of the foo-or-bar reactor from List-
ing 4.

command (storing it in ⊙𝑅 ⟨4⟩). The same thing that hap-
pened to the deployment of + now happens to the deploy-
ment of * in commands 5–8, storing the arithmetic product
in ⊙𝑅 ⟨8⟩. Finally, the sinks of the sum-and-product deploy-
ment are updated using the C𝑆𝑖𝑛𝑘 commands which move
the values in ⊙𝑅 ⟨4⟩ and ⊙𝑅 ⟨8⟩. Once these commands have
been executed by the virtual machine, other deployments
can look up the sink values by referencing ⊙𝑂 ⟨1⟩ and ⊙𝑂 ⟨2⟩.

Most (simple) reactor definitions will always follow this
same pattern: allocate the nested deployments in the deploy-
ment command sequence, and in the reaction command se-
quence supply the values to the nested deployment, let it re-
act, and then consume them locally. We call this the Supply–
React–Consume Pattern.

3.1.3 Example with Dynamic Deployments. Figure 4
shows how Listing 4 can be represented for Remus, using
the same kind of annotations that were used in Figure 3.This
example shows how dynamic deployments are supported.
The third deployment command (a C𝑀𝑎𝑘𝑒𝑃𝑜𝑙𝑦 command, re-
ferred to by ⊙𝐷 ⟨3⟩) creates a new branching point identi-
fier and stores it (like almost every command) somewhere
relative to that command’s location. It is the C𝐴𝑙𝑙𝑜𝑐𝑃𝑜𝑙𝑦 com-
mand (on position ⊙𝑅 ⟨9⟩) that actually creates the deploy-
ment, depending on the run-time value of the first source
signal (reaction commands 1–8 determine the reactor to use).

The C𝐴𝑙𝑙𝑜𝑐𝑃𝑜𝑙𝑦 command in the deployment command se-
quence will allocate a new deployment of the reactor re-
ferred to by its first operand, unless such a reactor has al-
ready been deployed (for the same branching point) in a
previous turn. The C𝐴𝑙𝑙𝑜𝑐𝑃𝑜𝑙𝑦 command is placed in the re-
action command sequence and will thus be able to create
(allocate) new deployments while the program is running.

Reactive Programming on the Bare Metal Conference’17, July 2017, Washington, DC, USA

𝑘 ∈ Configuration ::= K⟨𝑢, 𝐸, 𝐷,𝑇 ⟩
𝑑 ∈ 𝐷 ⊆ Deployment ::= D⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩

𝑢 ∈ Update Stack ::= halt | ⟨𝜄𝑑 , 𝑙,𝑢 ⟩
𝑣 ::= . . . | 𝜄𝑏 | 𝜄𝑑

𝐸 (Value Environment) : (𝑋 → 𝑉)
Σ (Deployment Memory) : (𝐿 → 𝑉)
𝑇 (Toggle Environment) : (𝐼𝑏 × 𝑋 → 𝐼𝑑)
𝜄𝑏 ∈ 𝐼𝑏 ⊆ BranchId, 𝜄𝑑 ∈ 𝐼𝑑 ⊆ DeploymentId

Figure 5. Semantic entities of Remus.

We will discuss in Section 4.1.1 a possible solution which
can avoid these run-time allocations.

Figure 4 highlights the use of a reactor named if*. The
if* reactor implements an eager if: both the consequent
signal and alternate signal are created and updated before
the if selects one of them as its output. This is different
from Haai’s default lazy if which only keeps the signals
activated that are needed for either the consequent or alter-
nate signal. In the case of Figure 4, both are constant signals,
so this distinction makes no difference here. However, Re-
mus can support programs that need a lazy if. As long as
a compiler compiles the consequent and alternate expres-
sions into separate reactors, and the eager if* is used to
first produce either that consequent reactor, or that alter-
nate reactor which can then be deployed accordingly. If the
consequent and alternate expressions contain free variables
that are not free variables in the original reactor, the values
of these variables (i.e. signals) can be provided as sources to
the generated consequent and alternate reactors.

Note here that in function-based programming, once a
function has finished being evaluated, its call frame can usu-
ally be removed from memory. In Remus, a deployment has
to remain in memory as it may contain stateful information
needed in consequent turns. Even if it is no longer active.
Furthermore, in incremental update strategies for reactive
programming, this is the intended behaviour as signals not
affected by a change are usually not updated (while signals
that are updated can refer to the current values of those that
are not).

3.2 Operational Semantics
We now present Remus’ semantics. We first describe the se-
mantic entities that are used in the reduction relation, then
show the construction of the initial configuration (which is
the domain and codomain of the reduction relation), before
showing the definition of the reduction relation itself.

3.2.1 Semantic Entities. Thesemantic entities are shown
in Figure 5. A configuration entity that models the state of
the virtual machine is typed𝑘 , and is a 4-tuple containing an
update stack𝑢, a value environment 𝐸, a set of deployments
𝐷 and a toggle environment 𝑇 . The update stack 𝑢 is used
to keep track of the locations in the command sequences

that still have to be executed whenever one deployment is
finished updating its own sink signals. The value environ-
ment 𝐸 contains the values of all the global (top-level) sig-
nals which the deployments have access to read the value of
these signals within a turn. The set of deployments 𝐷 con-
tains all the deployments that have already been created by
the program, which contains the information about the reac-
tive program’s dependency graph. We explain its structure
shortly. And finally, the 𝑇 contains the toggle environment:
a mapping from branching points (𝜄𝑏 , branching point iden-
tifier) and reactor identifiers (names) to the corresponding
deployment identifier. The toggle environment remembers
all run-time deployments and is used to support dynamic
deployment expressions (see Section 2.4).

Deployments themselves are also represented as a 4-tuple.
Its structure, unsurprisingly, is different. The first element
is the identifier of the deployment (𝜄𝑑) which is used to keep
track of the distinct deployments that make up the reac-
tive program. The second element is the name of the reac-
tor (𝑥) of which the deployment is an instance of, this is
needed to look up the commands that have to be executed
when updating a deployment’s state. The third element is a
boolean which represents whether or not the deployment
has already been initialised (𝑏). Or, in other words, whether
its deployment commands (the commands in the deploy-
ment command sequence) have already been executed. The
fourth element is the memory of the deployment (Σ) which
is, essentially, a mapping from locations (𝑙) to values that
are stored on that location. In the formalisation, Σ is repre-
sented as an environment that can grow infinitely. However,
since the number of locations of a single deployment is finite
(as there are only a finite number of commands per reactor)
these could be implemented as a vector of a fixed size (per
deployment), as informally described in Section 3.1.1.

3.3 Initial Configuration
The reduction relation does not work on programs 𝑝 , it oper-
ates on configurations (K) as defined in Figure 5. The initial
configuration 𝑘𝑖𝑛𝑖𝑡 is defined as follows:

𝑘𝑖𝑛𝑖𝑡 = K⟨halt, 𝐸𝑖𝑛𝑖𝑡 , {D⟨𝜄𝑑,𝑚𝑎𝑖𝑛,main, false, ∅⟩}, ∅⟩

Where 𝐸𝑖𝑛𝑖𝑡 = {time ↦→ 0} ∪ {𝑥 ↦→ false | ∀𝑥 ∈ 𝑋 } and 𝑋 is
the set of names of the global time-varying signals (such as
temperature). These global signals represent the external
signals that cause the signals in the reactive program to be
updated. Their value will be updated at the transition from
one turn to the next.

A few notes about 𝑘𝑖𝑛𝑖𝑡 :

• The initial update stack of 𝑘𝑖𝑛𝑖𝑡 is halt: this indicates to
the reduction relation that the current turn has ended and
that a new turn can begin.

Conference’17, July 2017, Washington, DC, USA Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter

• The initial value environment contains a mapping for all
the global time-varying signals. When the program is ini-
tially started, these signals have no actual value and are
thus, temporarily, set to false, until they are assigned an
value (alternatively, there could be a unique value noting
the absence of a value to distinguish scenarios where a
signal’s value is actually equal to false. The only signal
with an actual value here is the signal named time which
is automatically incremented at the start of each turn by
the reduction relation.

• The set of deployments contains an initial deployment of
a reactor called main, we assume in the rest of the paper
that each program run by Remus has a main reactor (e.g.,
like shown in Listing 2) whose outputs are the outputs
produced by the reactive program.

• Finally, the toggle environment (𝑇) is initialised to ∅: which
signifies an empty toggle environment.

3.3.1 ReductionRelation. Thereduction relation−→ de-
scribes the small-step operational semantics of Remus and
is shown in Figure 6. The top of the figure shows the reduc-
tion rules that make up the reduction relation, and a textual
summary of the helper functions, whose definition we deem
trivial, as used by the reduction rules is shown in the bottom.
By convention, these are typeset with ⟦. . .⟧.

The next-tuRn rule detects if the current stack𝑢 is equal
to halt, which signals that the current turn is over. It ex-
tracts the outputs of the deployment of main (𝑣𝑜) and gives
these value to sample_in which determines the inputs of
the time-varying signals which are to be processed in the
next turn in fucntion of the current time (𝑖𝑡) and the out-
put values of the current turn (𝑣𝑜). The values produced by
sample_in are then stored into 𝐸 in which the time is also
incremented by one, before (re)starting the computation to
update all deployments. The way how next-tuRn interacts
with an external environment via sample_in is related to
how the reactimate function (e.g., from Yampa [9]) lets a
reactive program interact with an external environment by
continuously feeding the reactive program new inputs and
acting on the output values that it produces.

The rules that are responsible for executing commands
(AllocMono, Global, Supply, React, PRimitive, Consume,
SinK,MaKePoly, AllocPoly-new andAllocPoly-existing)
are very similar to each other and will not be explained sep-
arately. These rules all use the get_command⟦. . .⟧ to fetch
the current command to ensure that a rule only can only
be applied if the virtual machine is in the right state. Com-
mands (and their corresponding rules) that modify a deploy-
ment’s memory (e.g., Global) usually do so by storing a
value (𝑣) in the signal’s memory (Σ) on the location of the
command (𝑙), as introduced in Section 3.1.1. Most of these
rules should be easy to comprehend given the explanation in
Table 1. Though, a few of these command-evaluating rules
do require some additional explanation.

• The React rule does not modify any Σ (nor the Σ of the
deployment which performs the C𝑅𝑒𝑎𝑐𝑡 command, nor the
deployment that has to react). It “pushes” a new frame
on top of the update stack (𝑢) that causes the specified
deployment to be updated before continuing the update
of the current deployment. The initial location (𝑙𝑜) is dif-
ferent depending on whether the specified deployment
has already been deployed (𝑏𝑜). If it has already been de-
ployed (i.e. it’s deployment commands have already been
executed earlier) then 𝑙𝑜 = ⊙𝑅 ⟨0⟩, if not 𝑙𝑜 = ⊙𝐷 ⟨0⟩. The
D-TRansition rule (see below) will make sure that𝑏𝑜 will
be updated accordingly.

• The PRimitive rule is used to support primitive compu-
tations5. For example, the + reactor will make use of this
command. It is represented as 𝑟+ = R⟨+, [], [C𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 ⟨+⟩]⟩
and thus when a deployment of the + reactor needs to
react, it only needs to execute the C𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 command,
which in turn triggers the PRimitive rule. This rule takes
all the source values supplied to the deployment (i.e. those
stored in ⊙𝐼 ⟨𝑖⟩), computes the result by applying 𝛿+ which
serves as the escape mechanism for applying basic com-
putations. Similar to reactors, primitive reactors can also
produce multiple values, thus each 𝛿 function is able to re-
turn multiple values. These values are then stored in ⊙𝑂

locations. Other primitive reactors follow the same prin-
ciples as 𝑟+.

• TheAllocPoly-new andAllocPoly-existing rules both
evaluate C𝐴𝑙𝑙𝑜𝑐𝑃𝑜𝑙𝑦 commands.The former can only be ap-
plied if for a given branching point (𝜄𝑏), no reactor named
𝑥𝑟 has been deployed. The latter can only be applied if
such a reactor has already been deployed (in a previous
turn). The AllocPoly-new rule is the only rule that mod-
ifies𝑇 , while the AllocPoly-existing rule is the only one
that makes use of it (without modifying it).

• Finally, there are two rules that detect when there are
no longer any commands in a command sequence to ex-
ecute: D-TRansition and R-TRansition. The former de-
tects when the deployment commands have all been exe-
cuted, the latter does the same for the reaction commands.
The D-TRansition rule updates the boolean stored in 𝑑
to true (to remember that the deployment has been ini-
tialised by executing the deployment commands). The R-
TRansition rule only needs to “pop” the current stack
frame from the update stack (𝑢). Both rules detect the end
of their respective command sequences by seeing if (𝑥, 𝑙)
is in the domain of the helper function get_command⟦. . .⟧.
An important remarkwith regards to the presented reduc-

tion relation is that it has no support for handling erronous
configurations. I.e. configurations which due to some kind
5Note that primitive computations are not the same as (lifted) functions.
The virtual machine provides, as part of its standard library, a set of simple
primitive computations that are assumed to be total and not dependent on
any signal themselves as a means to perform simple computations on the
values in𝑉 .

Reactive Programming on the Bare Metal Conference’17, July 2017, Washington, DC, USA

(next-tuRn)
𝑖𝑡 = 𝐸 (time) D ⟨𝜄𝑑,𝑚𝑎𝑖𝑛,main, 𝑏, Σ𝑚𝑎𝑖𝑛 ⟩ ∈ 𝐷 𝑣 = extract_out⟦Σ𝑚𝑎𝑖𝑛⟧

𝐸𝑠𝑎𝑚𝑝𝑙𝑒 = sample_in⟦𝑖𝑡 , 𝑣⟧ 𝐸′ = 𝐸 [time ↦→ 𝑖𝑡 + 1] [𝑥 ↦→ 𝐸𝑠𝑎𝑚𝑝𝑙𝑒 (𝑥) | ∀𝑥 ∈ dom(𝐸𝑠𝑎𝑚𝑝𝑙𝑒)] 𝑙𝑟𝑒𝑠𝑡𝑎𝑟𝑡 =

{
⊙𝐷 ⟨0⟩ (𝑏 = false)
⊙𝑅 ⟨0⟩ (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

K ⟨halt, 𝐸, 𝐷,𝑇 ⟩ −→ K ⟨⟨𝜄𝑑,𝑚𝑎𝑖𝑛, 𝑙𝑟𝑒𝑠𝑡𝑎𝑟𝑡 , halt⟩, 𝐸′, 𝐷,𝑇 ⟩

(AllocMono)
C𝐴𝑙𝑙𝑜𝑐𝑀𝑜𝑛𝑜 ⟨𝑥𝑛𝑒𝑤 ⟩ = get_command⟦𝑥, 𝑙⟧ 𝜄𝑑,𝑛𝑒𝑤 fresh
𝑑𝑛𝑒𝑤 = D⟨𝜄𝑑,𝑛𝑒𝑤 , 𝑥𝑛𝑒𝑤 , false, ∅⟩ Σ′ = Σ [𝑙 ↦→ 𝜄𝑑,𝑛𝑒𝑤]

K ⟨⟨𝜄𝑑 , 𝑙,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩ } ⊎𝐷,𝑇 ⟩ −→
K ⟨⟨𝜄𝑑 , next⟦𝑙⟧,𝑢 ⟩, 𝐸, {𝑑𝑛𝑒𝑤 , D⟨𝜄𝑑 , 𝑥, 𝑏, Σ′⟩ } ∪𝐷,𝑇 ⟩

(Global)
C𝐺𝑙𝑜𝑏𝑎𝑙 ⟨𝑥𝑔𝑙𝑜𝑏𝑎𝑙 ⟩ = get_command⟦𝑥, 𝑙⟧ 𝑣 = 𝐸 (𝑥𝑔𝑙𝑜𝑏𝑎𝑙) Σ′ = Σ [𝑙 ↦→ 𝑣]

K ⟨⟨𝜄𝑑 , 𝑙,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩ } ⊎𝐷,𝑇 ⟩ −→
K ⟨⟨𝜄𝑑 , next⟦𝑙⟧,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑 , 𝑥, 𝑏, Σ′⟩ } ∪𝐷,𝑇 ⟩

(Supply)
D⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩ ∈ 𝐷 C𝑆𝑢𝑝𝑝𝑙𝑦 ⟨𝑜, 𝑙𝑙𝑜𝑐𝑎𝑙 , 𝑖 ⟩ = get_command⟦𝑥, 𝑙⟧
𝑣 = fetch⟦Σ, 𝑜⟧ 𝜄𝑑,𝑜 = fetch⟦Σ, 𝑙𝑙𝑜𝑐𝑎𝑙⟧ Σ′𝑜 = Σ𝑜 [⊙𝐼 ⟨𝑖 ⟩ ↦→ 𝑣]

K ⟨⟨𝜄𝑑 , 𝑙,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑,𝑜 , 𝑥𝑜 , 𝑏𝑜 , Σ𝑜 ⟩ } ⊎𝐷,𝑇 ⟩ −→
K ⟨⟨𝜄𝑑 , next⟦𝑙⟧,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑,𝑜 , 𝑥𝑜 , 𝑏𝑜 , Σ′𝑜 ⟩ }} ∪𝐷,𝑇 ⟩

(React)
D⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩ ∈ 𝐷 C𝑅𝑒𝑎𝑐𝑡 ⟨𝑙𝑙𝑜𝑐𝑎𝑙 ⟩ = get_command⟦𝑥, 𝑙⟧ 𝜄𝑑,𝑜 = fetch⟦Σ, 𝑙𝑙𝑜𝑐𝑎𝑙⟧

D⟨𝜄𝑑,𝑜 , 𝑥𝑜 , 𝑏𝑜 , Σ𝑜 ⟩ ∈ 𝐷 𝑙𝑜 =

{
⊙𝐷 ⟨0⟩ (𝑏𝑜 = false)
⊙𝑅 ⟨0⟩ (𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)

K ⟨⟨𝜄𝑑 , 𝑙,𝑢 ⟩, 𝐸, 𝐷,𝑇 ⟩ −→
K ⟨⟨𝜄𝑑,𝑜 , 𝑙𝑜 , ⟨𝜄𝑑 , next⟦𝑙⟧,𝑢 ⟩⟩, 𝐸, 𝐷,𝑇 ⟩

(PRimitive)
C𝑃𝑟𝑖𝑚𝑖𝑡𝑖𝑣𝑒 ⟨𝑥𝑝 ⟩ = get_command⟦𝑥, 𝑙⟧ 𝑣𝑖 = extract_in⟦Σ⟧

𝑣𝑜 = 𝛿𝑥𝑝 ⟦𝑣𝑖⟧ Σ′ = insert_out⟦Σ, 𝑣𝑜⟧
K ⟨⟨𝜄𝑑 , 𝑙,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩ } ⊎𝐷,𝑇 ⟩ −→
K ⟨⟨𝜄𝑑 , next⟦𝑙⟧,𝑢 ⟩, 𝐸, D⟨𝜄𝑑 , 𝑥, 𝑏, Σ′⟩ } ∪𝐷,𝑇 ⟩

(Consume)
C𝐶𝑜𝑛𝑠𝑢𝑚𝑒 ⟨𝑙𝑜 , 𝑖 ⟩ = get_command⟦𝑥, 𝑙⟧ 𝜄𝑑,𝑜 = fetch⟦Σ, 𝑙𝑜⟧
D⟨𝜄𝑑,𝑜 , 𝑥𝑜 , 𝑏𝑜 , Σ𝑜 ⟩ ∈ 𝐷 𝑣 = Σ𝑜 (⊙𝑂 ⟨𝑖 ⟩) Σ′ = Σ [𝑙 ↦→ 𝑣]

K ⟨⟨𝜄𝑑 , 𝑙,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩ } ⊎𝐷,𝑇 ⟩ −→
K ⟨⟨𝜄𝑑 , next⟦𝑙⟧,𝑢 ⟩, 𝐸, D⟨𝜄𝑑 , 𝑥, 𝑏, Σ′⟩ } ∪𝐷,𝑇 ⟩

(SinK)
C𝑆𝑖𝑛𝑘 ⟨𝑜, 𝑖 ⟩ = get_command⟦𝑥, 𝑙⟧

𝑣 = fetch⟦Σ, 𝑜⟧ Σ′ = Σ [⊙𝑂 ⟨𝑖 ⟩ ↦→ 𝑣]
K ⟨⟨𝜄𝑑 , 𝑙,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩ } ⊎𝐷,𝑇 ⟩ −→
K ⟨⟨𝜄𝑑 , next⟦𝑙⟧,𝑢 ⟩, 𝐸, D⟨𝜄𝑑 , 𝑥, 𝑏, Σ′⟩ } ∪𝐷,𝑇 ⟩

(MaKePoly)
C𝑀𝑎𝑘𝑒𝑃𝑜𝑙𝑦 = get_command⟦𝑥, 𝑙⟧

𝜄𝑏 fresh Σ′ = Σ [𝑙 ↦→ 𝜄𝑏]
K ⟨⟨𝜄𝑑 , 𝑙,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩ } ⊎𝐷,𝑇 ⟩ −→
K ⟨⟨𝜄𝑑 , next⟦𝑙⟧,𝑢 ⟩, 𝐸, D⟨𝜄𝑑 , 𝑥, 𝑏, Σ′⟩ } ∪𝐷,𝑇 ⟩

(AllocPoly-new)
C𝐴𝑙𝑙𝑜𝑐𝑃𝑜𝑙𝑦 ⟨𝑜𝑟 , 𝑙𝑏 ⟩ = get_command⟦𝑥, 𝑙⟧ 𝑥𝑟 = fetch⟦Σ, 𝑜𝑟 ⟧

𝜄𝑏 = fetch⟦Σ, 𝑙𝑏⟧ (𝜄𝑏 , 𝑥𝑟) ∉ dom(𝑇) 𝜄𝑑,𝑜 fresh
𝑑𝑛𝑒𝑤 = D⟨𝜄𝑑,𝑜 , 𝑥𝑟 , false, ∅⟩ Σ′ = Σ [𝑙 ↦→ 𝜄𝑑,𝑜]

K ⟨⟨𝜄𝑑 , 𝑙,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩ } ⊎𝐷,𝑇 ⟩ −→
K ⟨⟨𝜄𝑑 , next⟦𝑙⟧,𝑢 ⟩, 𝐸, {𝑑𝑛𝑒𝑤 , D⟨𝜄𝑑 , 𝑥, 𝑏, Σ′⟩ } ∪𝐷,𝑇 ∪ {(𝜄𝑏 , 𝑥𝑟) ↦→ 𝜄𝑑,𝑜 }⟩

(AllocPoly-existing)
C𝐴𝑙𝑙𝑜𝑐𝑃𝑜𝑙𝑦 ⟨𝑜𝑟 , 𝑙𝑏 ⟩ = get_command⟦𝑥, 𝑙⟧ 𝑥𝑟 = fetch⟦Σ, 𝑜𝑟 ⟧
𝜄𝑏 = fetch⟦Σ, 𝑙𝑏⟧ 𝜄𝑑,𝑜 = 𝑇 (𝜄𝑏 , 𝑥𝑟) Σ′ = Σ [𝑙 ↦→ 𝜄𝑑,𝑜]

K ⟨⟨𝜄𝑑 , 𝑙,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩ } ⊎𝐷,𝑇 ⟩ −→
K ⟨⟨𝜄𝑑 , next⟦𝑙⟧,𝑢 ⟩, 𝐸, D⟨𝜄𝑑 , 𝑥, 𝑏, Σ′⟩ } ∪𝐷,𝑇 ⟩

(D-TRansition)
(𝑥, ⊙𝐷 ⟨𝑖 ⟩) ∉ dom(get_command)

K ⟨⟨𝜄𝑑 , ⊙𝐷 ⟨𝑖 ⟩,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩ ∈ 𝐷 } ⊎𝐷,𝑇 ⟩ −→
K ⟨⟨𝜄𝑑 , ⊙𝑅 ⟨0⟩,𝑢 ⟩, 𝐸, {D ⟨𝜄𝑑 , 𝑥, true, Σ⟩ ∈ 𝐷 } ∪𝐷,𝑇 ⟩

(R-TRansition)
D⟨𝜄𝑑 , 𝑥, 𝑏, Σ⟩ ∈ 𝐷 (𝑥, ⊙𝑅 ⟨𝑖 ⟩) ∉ dom(get_command)

K ⟨⟨𝜄𝑑 , ⊙𝑅 ⟨𝑖 ⟩,𝑢 ⟩, 𝐸, 𝐷,𝑇 ⟩ −→ K ⟨𝑢, 𝐸, 𝐷,𝑇 ⟩

Helper functions:
get_command⟦𝑥, 𝑙⟧ retrieves the command stored for reactor 𝑥 on location 𝑙 . fetch⟦Σ, 𝑜⟧ fetches 𝑜 . If 𝑜 ∈ 𝑉 then fetch produces 𝑜 directly. Otherwise, it looks up 𝑜 in Σ. This

helper function allows commands like C𝑆𝑢𝑝𝑝𝑙𝑦 and C𝑆𝑖𝑛𝑘 to work with both values and locations as operands. next⟦𝑙⟧ increments the given 𝑙 by one (which is used to go to the
next command). extract_in⟦Σ⟧ extracts the ⊙𝐼 s stored in Σ (in order). extract_out⟦Σ⟧ extracts the ⊙𝑂 s stored in Σ (in order). insert_out⟦Σ, 𝑣⟧ inserts the values 𝑣 into Σ as

outputs (⊙𝑂 s). sample_in⟦𝑖, 𝑣⟧ samples given the current time 𝑖 , and the current output values 𝑣 of the reactive, the external environment, producing a 𝐸. And finally, 𝛿𝑥𝑝 ⟦𝑣⟧
represents a function that performs a primitive computation. E.g., 𝛿+⟦𝑖1, 𝑖2⟧ performs the addition of 𝑖1 and 𝑖2 . 𝛿𝑥𝑝 functions can produce multiple values.

Figure 6. Small-step operational semantics of Remus.

of programmer error, no longer to reduce. The reduction re-
lation will get stuck in cases where a command refers to
a memory address (e.g., a source) for which no value has
been assigned. This can happen if a deployment is not sup-
plied the right number of values. As a consequence, proving
progress (an important property of an RP language, that is
related to liveness [1, 14]) given the reduction relation de-
fined in Figure 6 is not possible given the presented reduc-
tion relation.

4 Discussion

4.1 Memory Consumption of Remus Programs
In Section 3.1.1, we mentioned that our current virtual ma-
chine design makes it easier (with respect to standard ap-
proaches) to reason about a reactive program’smemory con-
sumption and allocation behaviour.

As can be easily seen fromour reduction relation, the only
commands that allocate memory are the commands that, ac-
cording to Table 1, can be placed in a deployment command
sequence and C𝐴𝑙𝑙𝑜𝑐𝑃𝑜𝑙𝑦 . All commands that write to Σ al-
ways do so in the static location: either as defined by one of
the operands themselves, or relative to the location of the
command, not a run-time value. Thus, the size of each de-
ployment’s Σ can easily be derived statically.

Conference’17, July 2017, Washington, DC, USA Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter

Ignoring C𝐴𝑙𝑙𝑜𝑐𝑃𝑜𝑙𝑦 for now, all commands in the deploy-
ment command sequence are only executed once for every
deployment of a reactor. In a reactive program without dy-
namic deployment expressions, all these deployment allo-
cations (thus memory allocations) happen only in the very
first turn. Without dynamic deployment expressions, the
number of deployments is static (as there are no polymor-
phic branching points) and the whole dependency graph
can be pre-determined. This makes it easy to determine an
entire reactive program’s memory footprint if the deploy-
ments are known before-hand. The only entity in a configu-
ration that can growdynamically (between state transitions)
is the update stack (𝑢), of which an upper-bound on its re-
quired size can easily be determined in the absence of dy-
namicity in the reactive program’s dependency graph.

4.1.1 Pre-determining theToggle Environment. How-
ever, if a reactive program uses dynamic deployment ex-
pressions, the above does no longer apply. These programs
compile to programs that use the C𝑀𝑎𝑘𝑒𝑃𝑜𝑙𝑦 and C𝐴𝑙𝑙𝑜𝑐𝑃𝑜𝑙𝑦
commands, where the latter is able to create (allocate) new
deployments while reacting.These allocations can thus hap-
pen in turns after the first one. One possible approach could
be to statically determine which reactors can flow over the
time-varying operator signals of the dynamic deployment
expressions. By doing so, one could (for programs that make
principled use of recursion) pre-determine a𝑇𝑓 𝑖𝑛𝑎𝑙 such that
at run-time no new deployments need to be allocated (e.g.,
by the AllocPoly-new rule). Furthermore, in such an anal-
ysis, one can determine which dynamic deployment expres-
sions are actually monomorphic and can be compiled into a
C𝐴𝑙𝑙𝑜𝑐𝑀𝑜𝑛𝑜 .

Such an analysis is essential in environments where one
has to be absolutely certain that a reactive program can be
run given a well-known memory limitation (e.g., in safety-
critical applications). If such a guarantee is not needed, one
can still use thememorymodel of Remus to reason about the
memory consumption of individual reactor deployments, ig-
noring the memory requirements of any dynamic deploy-
ments that may be created while the program is running.

While such an analysis does require one to analyse the
reactive program’s dependency graph in full, we still deem
our approach as an improvement over standard approaches
which requires one to analyse both reactive and non-reactive
code.

4.2 What Has Not (Yet) Been Formalised
The presented formalisation only covers the core semantics
of Haai. In this section, we briefly discuss the most signifi-
cant features of Haai that aremissing in Remus.When possi-
ble, we briefly discuss a possible extension that would make
this available to the presented formal specification.

Incremental Updates. First, the presented formal speci-
fication of Remus does not support any form of incremental-
ity. In most reactive programming languages, only signals
that depend on a signal that is updated are also updated by
the RP runtime. Dormant signals, which are signals that are
not affected by a change, should not be updated. In Remus,
signals that should be dormant are also updated. In every
turn, the whole dependency graph (represented by deploy-
ments with their corresponding command sequences) is up-
dated. One possible modification that can easily be made to
the formalisation is to give deployments a dirty bit which
is initially set to true (each newly-instantiated deployment
must always execute its commands in full). During the eval-
uation of C𝑆𝑢𝑝𝑝𝑙𝑦 commands, the dirty bit is set to true
when the value that is being supplied is different from the
one that is currently stored in the deployment. The C𝑅𝑒𝑎𝑐𝑡
command can then decide to skip the update of the nested
deployment if the dirty bit is still set to false: if none of
the sources changed their value, updating the inner signals
will be pointless. This change, however, would not actually
alter the semantics of the VM. However, as needlessly updat-
ing signals has a adverse impact on the performance, such
a modification is probably well-advised for an actual imple-
mentation of Remus. Although, by doing so the time-per-
turn could greatly vary over time (causing jitter), whichmay
be undesirable for certain embedded systems.

Stateful Reactors. Second, Haai has support for state-
ful reactors using special variables called trampoline vari-
ables [23]. Trampoline variables (or stateful operators in gen-
eral) can be modelled on top of the presented formalisa-
tion by providing new commands that identify, initialise,
fetch, and update trampoline variables. Stateful operators
from other RP languages (like foldp in Elm [10] and pre
in RT-FRP [33]) can then be implemented using these same
commands.

Run-TimeComposition ofReactors. Remus has no sup-
port for the run-time weaving of reactors. Haai has a set of
composition operators called weaving operators that com-
bine reactors in a point-free style[22]. For example, the par-
allel weaving operators combines two reactors such that
the inputs are divided (according to the input arities of the
original reactors) between the two reactors. A possible solu-
tion that can happen at compile-time could be to compile ex-
pressions like (parallel + *) into a reactor like sum-and-
parallel (see Listing 3 and Figure 1). However, weaving
operators can be applied on time-varying signals in Haai, so
this syntactic transformation is not always possible. How-
ever, the analysis proposed in Section 4.1.1 can help in solv-
ing this problem as the necessary reactors can then be gen-
erated at-compile time.

Anonymous Reactors with Lexical Scope. Finally, Re-
mus has no support for captures, anonymous reactors with

Reactive Programming on the Bare Metal Conference’17, July 2017, Washington, DC, USA

lexical scope [24]. Reactors with lexical scope have, besides
access to the globally-defined signals (which can currently
be accessed using C𝐺𝑙𝑜𝑏𝑎𝑙 commands) also access to signals
from another deployment (the deployment that created the
capture). In the future, we aim to further research the char-
acteristics of anonymous reactors with lexical scope, and
consider this as part of our future work.

4.3 Compiler
The main focus of this paper has been on the design of the
virtual machine: not on the compiler from Haai to Remus.
Still, we wish to discuss two interesting areas with regards
to the compilation of reactors.

First, the examples of reactor defintions in Remus pre-
sented in this paper (Figures 3 and 4) only show one correct
compiled representation each. For example, the sum-and-
product reactor’s commands can be arbitrarily permuted
as long as commands that refer to another command’s out-
put are placed after that command (i.e. in a glitch-free way).
For example, the first C𝑆𝑖𝑛𝑘 command can be placed directly
after the C𝐶𝑜𝑛𝑠𝑢𝑚𝑒 command that fetches the sum. This of
course is a consequence of the fact that a topological order-
ing of directed acyclic graphs (which reactor graphs are) is
often not unique. A compiler is thus free to choose an ar-
bitrary ordering as long as it is a valid topological sort. An
important insight here is that a Haai interpreter (using a
regular priority queue to schedule signal updates) is free to
change the order in which signals are updated at every com-
putational step (as long as it choses a signal to update in
a glitch-free manner), while the order used by Remus pro-
grams is determined at-compile time for all turns. However,
as long as all orders (both the one determined statically by
the compiler and the ones decided at-runtime during every
turn) ensure that signal updates happen in a glitch-freeman-
ner, both run-time strategies should be equivalent (i.e. pro-
duce the same values on the same signals).

Second, our compiler currently places commands accord-
ing the validity shown in Table 1. In the future, we deem
it likely that these validity restrictions might change if ad-
ditional features (e.g., those mentioned in Section 4.2) are
added to Remus, or if additional compile-time optimisations
are introduced.

5 Related Work
Before we conclude this paper, we present an overview of
other research projects that intent tomake reactive program-
ming a suitable approach for building software targeted at
small-scale embedded (e.g., IoT) devices.

Reactive Programing Languages. ReactiFi [30] is a re-
active programming language implemented as an embed-
ded domain-specific language in Scala that compiles reac-
tive programs directly into C code which can then compiled
into a native binary for (e.g.,) WiFi hardware platforms. It

does so by compiling both the lifted functions and the de-
pendency graph. The latter is compiled similar to programs
in Remus by topologically sorting the constructed depen-
dency graph. However, unlike Remus, ReactiFi has only lim-
ited support for dynamic dependency graphs as it does not
feature higher-order reactives.

Emfrp [28] is another RP languages that compiles reac-
tive programs into C code. Emfrp lacks an abstraction for
reactive computational units (i.e. reactors): all signals are
defined directly in the top-level (which does not encourage
reuse) and also lacks the ability to dynamically change the
dependency graph.

CFRP [31] and Hae [35] are two reactive languages that
are both similar to Emfrp, but are built on top Haskell (Em-
frp uses its own syntax), inheriting its powerful type and
macro system, and generate C++ code from a reactive pro-
gram definition. Unlike Emfrp, CFRP and Hae do support
dynamic changes in the dependency graph. It does so by us-
ing a queue data structure on which signals are enqueued
when they can be updated. This is similar to the FrTime ex-
ample from Section 2, except that the queue is used only
for signals that are ready to be updated: each signal keeps
track of the number of signals that it depends on and is only
enqueued when it has received updates from all its depen-
dencies. In the case of Remus, such a queue is not needed,
even for programs with dynamic dependency graphs.

E-FRP [34] programs are reactive programs that are com-
piled into a very simple imperative language (called “Sim-
pleC”) that serves as an intermediate representation of C.
E-FRP’s design is similar to Emfrp’s as signals in Emfrp are
also always defined in the top-level (and has no support for
dynamic modifications to the signal dependencies). How-
ever, E-FRP’s programming style is completely different: sig-
nals in E-FRP are constructed, in essence, out of functions
that simply return the new value of a signal given the old
values of all signals and the event that caused the signals to
update.

Synchronous Programing Languages. We cannot con-
clude this sectionwithoutmentioning synchronous program-
ming languages. Synchronous languages are closely related
to reactive languages as they are also used for building ap-
plications that continuously react to external events. Many
synchronous programming language support the ability to
compile to imperative code (or another in-between repre-
sentation) similar to the languages mentioned above: for ex-
ample, Esterel [3] and Lucid Synchrone [5, 25], The main
difference between the RP languages and synchronous lan-
guages is that the latter are usually designed with respon-
siveness and reliability in mind (i.e. synchronous languages
are commonly used for building real-time applicationswhere
safety and reliability is vital [2]), while reactive program-
ming has originally been invented for preventing callback
hell [18] in event-driven applications and, usually, do not

Conference’17, July 2017, Washington, DC, USA Bjarno Oeyen, Joeri De Koster, and Wolfgang De Meuter

need the same kind of constraints and guarantees compared
that synchronous languages provide [14].

One noteworthy mention is the language Céu-T, which is
derived from the synchronous language Céu [27], for which
a specialised virtual machine exist called VM-T [4]. VM-T,
however, is much more low-level compared to Remus. Pro-
grams for VM-T are not simply an ordering of how various
components (i.e. signals) are updated like in Remus, but are
imperative programs that has to assign values to registers,
push values to a stack (to store argument values when call-
ing a function, or during the evaluation of complex arith-
matic expressions), and use instructions to copy or clear cer-
tain data structures. VM-T’s main focus is on the coordina-
tion of events that cause the evaluation of the various com-
ponents that make up a syncronous program, which is dif-
ferent fromRemuswherewe simply assume the existence of
certain (globally-defined) signals that, from the perspective
of the RP programmer, always have a value.

6 Conclusion
In this paper, we presented Remus: a formal specification
which outlines the design of a virtual machine, specialised
in running reactive programs via pre-scheduled reactors. Re-
mus designmakes a few simplificationswith respect to other
virtual machine designs. First, the memory layout of a Re-
mus program consist, mostly, of deployments. The size of
a deployment depends solely on the size of the reactor (i.e.
the number of sources, sinks and commands) of which it is
an instance of. Commands in a Remus program will, with
some few exceptions, always store the value that they pro-
duce in a memory region belonging to a deployment, offset
with the location of the command itself.

In this paper, we have outlined the functionality of Remus
that supports higher-order reactive programs (i.e. reactive
programs where the dependency graph is dynamic). More
specifically, we explained that even in the presence of such
functionality, Remus programs can still be pre-scheduled.
This is a consequence of Haai’s design (Haai is the reac-
tive programming language that Remus is based on). Haai
programs do not require one to write a non-reactive loader
program that constructs the reactive program’s dependency
graph. By treating thewhole reactive program as the compo-
sition of reactors, one can use the (simple) evaluation rules
of reactors, without having to reason about all the complex
means in which the reactive semantics are integrated with
the non-reactive semantics.

In the future, we aim to use the design of Remus to imple-
ment an actual (efficient) virtual machine that can serve as a
run-time for embedded reactive applications, similar to how
(e.g.,) Warduino [29], MicroPython [19] and Duktape [13]
are targeting microcontrollers for (respectively) Webassem-
bly, Python and Javascript.

Acknowledgments
Bjarno Oeyen is funded by the Research Foundation - Flan-
ders (FWO) under grant number 1S93822N.

References
[1] Patrick Bahr, Christian Uldal Graulund, and Rasmus Ejlers Møgelberg.

2021. Diamonds are not forever: liveness in reactive programming
with guarded recursion. Proc. ACM Program. Lang. 5, POPL (2021),
1–28. https://doi.org/10.1145/3434283

[2] Albert Benveniste. 1998. Synchronous Languages and Reactive Sys-
tem Design. IFAC Proceedings Volumes 31, 15 (1998), 35–46. https:
//doi.org/10.1016/S1474-6670(17)40526-X 9th IFAC Symposium on
Information Control in Manufacturing 1998 (INCOM ’98), Nancy,
France, 24-26 June.

[3] Gérard Berry and Georges Gonthier. 1992. The Esterel Synchronous
Programming Language: Design, Semantics, Implementation. Sci.
Comput. Program. 19, 2 (1992), 87–152. https://doi.org/10.1016/0167-
6423(92)90005-V

[4] Adriano Branco, Noemi Rodriguez, and Silvana Rossetto. 2021.
A Virtual Machine for Reactive Programming on IoT devices.
(2021). https://web.archive.org/web/20220908133001/http://bib-di.
inf.puc-rio.br/ftp/pub/docs/techreports/21_02_branco.pdf

[5] Jean-Louis Colaço, Grégoire Hamon, and Marc Pouzet. 2006. Mixing
signals and modes in synchronous data-flow systems. In Proceedings
of the 6th ACM & IEEE International conference on Embedded software,
EMSOFT 2006, October 22-25, 2006, Seoul, Korea, Sang Lyul Min and
WangYi (Eds.). ACM, 73–82. https://doi.org/10.1145/1176887.1176899

[6] Gregory H. Cooper. 2008. Integrating Dataflow Evaluation into a
Practical Higher-Order Call-by-Value Language. Ph. D. Dissertation.
Brown University, USA. https://cs.brown.edu/research/pubs/theses/
phd/2008/cooper.pdf

[7] Gregory H. Cooper and Shriram Krishnamurthi. 2006. Embedding
Dynamic Dataflow in a Call-by-Value Language. In Programming Lan-
guages and Systems, 15th European Symposium on Programming, ESOP
2006, Held as Part of the Joint European Conferences onTheory and Prac-
tice of Software, ETAPS 2006, Vienna, Austria, March 27-28, 2006, Pro-
ceedings (Lecture Notes in Computer Science, Vol. 3924), Peter Sestoft
(Ed.). Springer, 294–308. https://doi.org/10.1007/11693024_20

[8] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. 2009. Introduction to Algorithms, 3rd Edition. MIT Press.
http://mitpress.mit.edu/books/introduction-algorithms

[9] Antony Courtney, Henrik Nilsson, and John Peterson. 2003. The
Yampa arcade. In Proceedings of the ACM SIGPLAN Workshop on
Haskell, Haskell 2003, Uppsala, Sweden, August 28, 2003, Johan Jeuring
(Ed.). ACM, 7–18. https://doi.org/10.1145/871895.871897

[10] Evan Czaplicki and Stephen Chong. 2013. Asynchronous functional
reactive programming for GUIs. In ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’13, Seattle, WA,
USA, June 16-19, 2013, Hans-Juergen Boehm and Cormac Flanagan
(Eds.). ACM, 411–422. https://doi.org/10.1145/2491956.2462161

[11] L. Peter Deutsch and Allan M. Schiffman. 1984. Efficient Imple-
mentation of the Smalltalk-80 System. In Conference Record of the
Eleventh Annual ACM Symposium on Principles of Programming Lan-
guages, Salt Lake City, Utah, USA, January 1984, Ken Kennedy, Mary
S. Van Deusen, and Larry Landweber (Eds.). ACM Press, 297–302.
https://doi.org/10.1145/800017.800542

[12] Joscha Drechsler, Ragnar Mogk, Guido Salvaneschi, and Mira Mezini.
2018. Thread-safe reactive programming. Proc. ACM Program. Lang.
2, OOPSLA (2018), 107:1–107:30. https://doi.org/10.1145/3276477

[13] Duktape Contributors. 2022. Duktape. https://web.archive.org/web/
20220822064245/https://duktape.org/.

[14] Alan Jeffrey. 2013. Functional reactive programming with liveness
guarantees. In ACM SIGPLAN International Conference on Functional
Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013, Greg

https://doi.org/10.1145/3434283
https://doi.org/10.1016/S1474-6670(17)40526-X
https://doi.org/10.1016/S1474-6670(17)40526-X
https://doi.org/10.1016/0167-6423(92)90005-V
https://doi.org/10.1016/0167-6423(92)90005-V
https://web.archive.org/web/20220908133001/http://bib-di.inf.puc-rio.br/ftp/pub/docs/techreports/21_02_branco.pdf
https://web.archive.org/web/20220908133001/http://bib-di.inf.puc-rio.br/ftp/pub/docs/techreports/21_02_branco.pdf
https://doi.org/10.1145/1176887.1176899
https://cs.brown.edu/research/pubs/theses/phd/2008/cooper.pdf
https://cs.brown.edu/research/pubs/theses/phd/2008/cooper.pdf
https://doi.org/10.1007/11693024_20
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/871895.871897
https://doi.org/10.1145/2491956.2462161
https://doi.org/10.1145/800017.800542
https://doi.org/10.1145/3276477
https://web.archive.org/web/20220822064245/https://duktape.org/
https://web.archive.org/web/20220822064245/https://duktape.org/

Reactive Programming on the Bare Metal Conference’17, July 2017, Washington, DC, USA

Morrisett and Tarmo Uustalu (Eds.). ACM, 233–244. https://doi.org/
10.1145/2500365.2500584

[15] Richard Kelsey,WilliamD. Clinger, and Jonathan Rees. 1998. Revised5
Report on the Algorithmic Language Scheme. ACM SIGPLAN Notices
33, 9 (1998), 26–76. https://doi.org/10.1145/290229.290234

[16] Robert Bruce Findler Matthias Felleisen and Matthew Flatt. 2009. Se-
mantics engineering with PLT Redex. MIT Press, Cambridge, Mass.

[17] Erik Meijer. 2010. Reactive Extensions (Rx): Curing Your Asynchro-
nous Programming Blues. InACMSIGPLANCommercial Users of Func-
tional Programming (Baltimore, Maryland) (CUFP ’10). Association
for Computing Machinery, New York, NY, USA, Article 11, 1 pages.
https://doi.org/10.1145/1900160.1900173

[18] Leo A. Meyerovich, Arjun Guha, Jacob P. Baskin, Gregory H. Cooper,
Michael Greenberg, Aleks Bromfield, and Shriram Krishnamurthi.
2009. Flapjax: a programming language for Ajax applications. In
Proceedings of the 24th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOP-
SLA 2009, October 25-29, 2009, Orlando, Florida, USA, Shail Arora and
Gary T. Leavens (Eds.). ACM, 1–20. https://doi.org/10.1145/1640089.
1640091

[19] MicroPython Contributors. 2022. GitHub - micropy-
thon/micropython: MicroPython - a lean and efficient Python
implementation for microcontrollers and constrained sys-
tems. https://web.archive.org/web/20220912080849/https:
//github.com/micropython/micropython/.

[20] Ragnar Mogk, Joscha Drechsler, Guido Salvaneschi, and Mira Mezini.
2019. A fault-tolerant programming model for distributed interac-
tive applications. Proc. ACM Program. Lang. 3, OOPSLA (2019), 144:1–
144:29. https://doi.org/10.1145/3360570

[21] Florian Myter, Christophe Scholliers, and Wolfgang De Meuter. 2019.
Distributed Reactive Programming for Reactive Distributed Systems.
Art Sci. Eng. Program. 3, 3 (2019), 5. https://doi.org/10.22152/
programming-journal.org/2019/3/5

[22] Bjarno Oeyen, Sam Van den Vonder, and Wolfgang De Meuter. 2020.
Reactive sorting networks. In REBLS 2020: Proceedings of the 7th ACM
SIGPLAN International Workshop on Reactive and Event-Based Lan-
guages and Systems, Virtual Event, USA, November 16, 2020. ACM, 38–
50. https://doi.org/10.1145/3427763.3428316

[23] Bjarno Oeyen, Sam Van den Vonder, and Wolfgang De Meuter. 2021.
Trampoline variables: a general method for state accumulation in re-
active programming. In REBLS 2021: Proceedings of the 8th ACM SIG-
PLAN International Workshop on Reactive and Event-Based Languages
and Systems, Chicago, IL, USA, 18 October 2021, Louis Mandel (Ed.).
ACM, 27–40. https://doi.org/10.1145/3486605.3486787

[24] Bjarno Oeyen, Humberto Rodríguez-Avila, Sam Van den Vonder, and
Wolfgang De Meuter. 2018. Composable higher-order reactors as the
basis for a live reactive programming environment. In Proceedings of
the 5th ACM SIGPLAN International Workshop on Reactive and Event-
Based Languages and Systems, REBLS@SPLASH 2018, Boston, MA, USA,
November 4, 2018, Guido Salvaneschi, Wolfgang De Meuter, Patrick
Eugster, Lukasz Ziarek, and Francisco Sant’Anna (Eds.). ACM, 51–60.
https://doi.org/10.1145/3281278.3281284

[25] Marc Pouzet. 2010. index. https://web.archive.org/web/
20220909125429/https://www.di.ens.fr/~pouzet/lucid-synchrone/
index.html.

[26] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. 2014. REScala:
bridging between object-oriented and functional style in reactive ap-
plications. In 13th International Conference on Modularity, MODULAR-
ITY ’14, Lugano, Switzerland, April 22-26, 2014, Walter Binder, Erik
Ernst, Achille Peternier, and Robert Hirschfeld (Eds.). ACM, 25–36.
https://doi.org/10.1145/2577080.2577083

[27] Francisco Sant’Anna, Roberto Ierusalimschy, Noemi de La Rocque Ro-
driguez, Silvana Rossetto, and Adriano Branco. 2017. The Design and
Implementation of the Synchronous Language CÉU. ACM Trans. Em-
bed. Comput. Syst. 16, 4 (2017), 98:1–98:26. https://doi.org/10.1145/
3035544

[28] Kensuke Sawada and Takuo Watanabe. 2016. Emfrp: a functional re-
active programming language for small-scale embedded systems. In
Companion Proceedings of the 15th International Conference on Modu-
larity, Málaga, Spain, March 14 - 18, 2016, Lidia Fuentes, Don S. Batory,
and Krzysztof Czarnecki (Eds.). ACM, 36–44. https://doi.org/10.1145/
2892664.2892670

[29] Robbert Gurdeep Singh and Christophe Scholliers. 2019. WARDuino:
a dynamic WebAssembly virtual machine for programming micro-
controllers. In Proceedings of the 16th ACM SIGPLAN International
Conference on Managed Programming Languages and Runtimes, MPLR
2019, Athens, Greece, October 21-22, 2019, Antony L. Hosking and
Irene Finocchi (Eds.). ACM, 27–36. https://doi.org/10.1145/3357390.
3361029

[30] Artur Sterz, Matthias Eichholz, Ragnar Mogk, Lars Baumgärtner,
Pablo Graubner, Matthias Hollick, Mira Mezini, and Bernd Freisleben.
2021. ReactiFi: Reactive Programming of Wi-Fi Firmware on Mobile
Devices. Art Sci. Eng. Program. 5, 2 (2021), 4. https://doi.org/10.22152/
programming-journal.org/2021/5/4

[31] Kohei Suzuki, Kanato Nagayama, Kensuke Sawada, and TakuoWatan-
abe. 2018. CFRP: A functional reactive programming language for
small-scale embedded systems. In Theory and Practice of Computa-
tion: Proceedings of Workshop on Computation: Theory and Practice
WCTP2016. World Scientific, 1–13.

[32] TypeSafe, Inc. 2022. Documentation | Akka. https://web.archive.org/
web/20220908081951/https://akka.io/docs/.

[33] Zhanyong Wan, Walid Taha, and Paul Hudak. 2001. Real-Time FRP.
In Proceedings of the Sixth ACM SIGPLAN International Conference on
Functional Programming (ICFP ’01), Firenze (Florence), Italy, September
3-5, 2001, Benjamin C. Pierce (Ed.). ACM, 146–156. https://doi.org/10.
1145/507635.507654

[34] Zhanyong Wan, Walid Taha, and Paul Hudak. 2002. Event-Driven
FRP. In Practical Aspects of Declarative Languages, 4th International
Symposium, PADL 2002, Portland, OR, USA, January 19-20, 2002, Pro-
ceedings (Lecture Notes in Computer Science, Vol. 2257), Shriram Krish-
namurthi and C. R. Ramakrishnan (Eds.). Springer, 155–172. https:
//doi.org/10.1007/3-540-45587-6_11

[35] Sheng Wang and Takuo Watanabe. 2020. Functional Reactive EDSL
with Asynchronous Execution for Resource-Constrained Embedded Sys-
tems. Springer International Publishing, Cham, 171–190. https:
//doi.org/10.1007/978-3-030-26428-4_12

https://doi.org/10.1145/2500365.2500584
https://doi.org/10.1145/2500365.2500584
https://doi.org/10.1145/290229.290234
https://doi.org/10.1145/1900160.1900173
https://doi.org/10.1145/1640089.1640091
https://doi.org/10.1145/1640089.1640091
https://web.archive.org/web/20220912080849/https://github.com/micropython/micropython/
https://web.archive.org/web/20220912080849/https://github.com/micropython/micropython/
https://doi.org/10.1145/3360570
https://doi.org/10.22152/programming-journal.org/2019/3/5
https://doi.org/10.22152/programming-journal.org/2019/3/5
https://doi.org/10.1145/3427763.3428316
https://doi.org/10.1145/3486605.3486787
https://doi.org/10.1145/3281278.3281284
https://web.archive.org/web/20220909125429/https://www.di.ens.fr/~pouzet/lucid-synchrone/index.html
https://web.archive.org/web/20220909125429/https://www.di.ens.fr/~pouzet/lucid-synchrone/index.html
https://web.archive.org/web/20220909125429/https://www.di.ens.fr/~pouzet/lucid-synchrone/index.html
https://doi.org/10.1145/2577080.2577083
https://doi.org/10.1145/3035544
https://doi.org/10.1145/3035544
https://doi.org/10.1145/2892664.2892670
https://doi.org/10.1145/2892664.2892670
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.1145/3357390.3361029
https://doi.org/10.22152/programming-journal.org/2021/5/4
https://doi.org/10.22152/programming-journal.org/2021/5/4
https://web.archive.org/web/20220908081951/https://akka.io/docs/
https://web.archive.org/web/20220908081951/https://akka.io/docs/
https://doi.org/10.1145/507635.507654
https://doi.org/10.1145/507635.507654
https://doi.org/10.1007/3-540-45587-6_11
https://doi.org/10.1007/3-540-45587-6_11
https://doi.org/10.1007/978-3-030-26428-4_12
https://doi.org/10.1007/978-3-030-26428-4_12

	Abstract
	1 Introduction
	2 Approach
	2.1 Problem Statement
	2.2 Evaluation Model
	2.3 Design of the Virtual Machine
	2.4 Dynamic Deployments

	3 Remus: A Virtual Machine for RP
	3.1 Syntax
	3.2 Operational Semantics
	3.3 Initial Configuration

	4 Discussion
	4.1 Memory Consumption of Remus Programs
	4.2 What Has Not (Yet) Been Formalised
	4.3 Compiler

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

