A Domain-Specific Language for Multi-Agent
Reinforcement Learning in Distributed Systems

Tim Molderez, Bjarno Oeyen, and Wolfgang De Meuter

Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
{tim.molderez, bjarno.oeyen, wolfgang.de.meuter}@vub.be

Abstract. Many multi-agent reinforcement learning (MARL) problems
are well-suited to be solved in a distributed manner. Not only to achieve
scalability in terms of runtime or memory, but also because the environ-
ment may be a distributed system. While distributed machine learning is
appealing in these cases, it does introduce several complexities inherent
to distributed computing This paper presents Marlon, a domain-specific
language to facilitate MARL in a distributed environment. Marlon essen-
tially acts as a bridge between the environment and the agents observing
it, and abstracts away many of the concerns related to distributed com-
puting. We demonstrate Marlon by means of a load balancing example,
where MARL is used to optimize the system’s performance, while allow-
ing network nodes to join and leave the system.

Keywords: Domain-specific languages, multi-agent reinforcement learn-
ing, distributed systems

1 Introduction and overview

This work targets the use of multi-agent reinforcement learning (MARL) in a
distributed context. That is, our primary focus is on the use of MARL where the
environment is a distributed system, in a broad sense of the term. For instance,
it includes applications intended for smart grids, traffic control systems, wireless
sensor networks, or vehicle-to-vehicle communication networks. Such systems
may involve a large number of networked devices. Due to their scale, it is not
trivial to ensure such systems perform optimally in terms of e.g. throughput,
reliability, latency or resource usage. Observing that each node in the network
is an autonomous entity, MARL would be a natural fit for tackling this type of
optimization problems. However, the use of MARL is complicated by a number
of factors inherent to distributed systems: nodes may dynamically join/leave the
network, lose their connection or even crash entirely.

To allow MARL researchers to focus on their area of expertise, and abstract
away the different considerations that need to be made for distributed systems,
we developed a domain-specific language called Marlon'2. The same also holds

! Marlon can be found at: https://gitlab.soft.vub.ac.be/smileit /marlon-dsl
2 A video demonstration is available at: https://youtu.be/dzM9CIT20SU



2 T. Molderez et al.

from the perspective of distributed system experts; Marlon facilitates the inte-
gration of existing MARL algorithms in distributed systems without the need
to know the intricacies of machine learning. In short, Marlon acts as a bridge
between the two domains of MARL and distributed systems. The language is
built on top of the Elixir host language, which is designed for developing large
distributed systems.

A Marlon program consists of two key components: actors and goals. The dis-
tributed system, i.e. the environment, is composed of actors. This notion of actors
stems from the actor concurrency model [1]. Each actor runs in its own thread
of execution, has its own isolated state and can only communicate with other
actors by sending messages. The interface between this actor-based environment
and a MARL algorithm is specified with a goal. A goal in Marlon specifies all
the information required to configure a MARL algorithm: the reward function,
the action space, which MARL algorithm to use, the algorithm’s parameters,
which information should be shared among agents, etc. To effectively connect a
distributed environment to a goal specification, three kinds of statements should
be inserted in the environment: first, a statement that attaches an agent to an
actor, such that the agent can observe the actor’s state and let this agent perform
actions. Second, a statement to indicate when the agent must choose an action.
Third, a statement to indicate when the reward should be computed. Finally,
Marlon provides an API that makes it possible to reuse existing MARL algo-
rithms, or add new ones. Given that the Elixir host language is not commonly
used for machine learning, it also is possible to interface with MARL algorithms
written in Python or C++.

2 Demonstration

To showcase the flexibility of Marlon, and to demonstrate the language both
from the perspective of a MARL researcher and and distributed systems expert,
we have implemented the load balancing use case that was also used to evaluate
the ESRL MARL algorithm presented in the work of Verbeeck et al. [2]. This
use case involves a master network node that distributes a given job across a
number of heterogeneous worker nodes. Workers are free to join or leave the
network at any time, and they can request a certain amount of work from the
master. MARL is used to optimize this amount for each worker.

References

1. Agha, G.A.: Actors: a model of concurrent computation in distributed systems
(1986), http://cds.cern.ch/record/1220706

2. Verbeeck, K., Nowé, A., Parent, J., Tuyls, K.: Exploring selfish reinforcement learn-
ing in repeated games with stochastic rewards. Autonomous Agents and Multi-Agent
Systems 14(3), 239-269 (Jun 2007). https://doi.org/10.1007/s10458-006-9007-0,
https://doi.org/10.1007/s10458-006-9007-0



